If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144x^2+x-1=0
a = 144; b = 1; c = -1;
Δ = b2-4ac
Δ = 12-4·144·(-1)
Δ = 577
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{577}}{2*144}=\frac{-1-\sqrt{577}}{288} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{577}}{2*144}=\frac{-1+\sqrt{577}}{288} $
| 5-3(2x-7)=3(12-2x) | | 13+n=4(1+n) | | 9x^2-108x+20=0 | | 8=14-1/2x | | 3c/5-18=-9 | | (5/3)a-6=94 | | 3x+.5=4 | | 95.30=19.95+.55m | | 1/4-1/2c=-3/4c | | x-13x-5=-95 | | (180-3x)=(3x) | | 2k=4k-5 | | -2(w+-15)=12 | | (8x-120)=(4x+24) | | 14.99x-2.5=13.49×-1 | | (3x+32)=(6x-118) | | 15=-6x-21 | | 36-7=-7p-35 | | (n+5)/3=5 | | 3/8r=25 | | 7/5x=3/2x-2 | | 9c+26=0 | | 5.6(x-3.5)=-22.4 | | 10-40m=10+5m | | -12n-6=-10n+4 | | (z/5)-6=1(1/6) | | (7x-27)=(4x=12) | | 7c-27=0 | | 12y+5(y–6)=4 | | 8n+3=-21-4n= | | 2x-6-7=-7x-22 | | 12y+5(y–6)=6 |